Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Neotrop Entomol ; 48(1): 38-49, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29651693

ABSTRACT

The diet of shredder chironomid larvae depends on the local and temporal conditions of the food resources. We analysed the gut content of shredder chironomid larvae that colonised the leaf litter of three riparian species: Hedychium coronarium, Pteridium arachnoideum and Magnolia ovata. We hypothesised that the differences in the decomposition rates of leaf litter species influence the consumption of plant tissue by shredder chironomid taxa over time. We incubated perforated bottles with each leaf species within four low-order streams during 1st, 3rd, 7th, 22nd, 36th, 55th and 85th day of exposure. We used an analysis of covariance (ANCOVA) to compare differences in the percentage of AFDM (ash-free dry mass) and AOM (amorphous organic matter) among leaf litter species. To verify differences in the larvae abundance, we used a general linear model, and to test if there were feeding preferences for AFDM and AOM, we used the adapted Paloheimo selectivity index. Magnolia ovata presented a higher quantity of AOM followed by H. coronarium and P. arachnoideum. Pteridium arachnoideum showed a higher AFDM followed by H. coronarium and M. ovata. The larvae abundance was different among plant species and varied significantly with AFDM and AOM quantities. The consumption of plant tissue by shredder chironomid differed temporarily and among riparian species, where facultative or strict shredders showed strong association with different leaf litter species. The amount of AFDM and AOM in plant tissues explained these differences. We highlighted that shredder chironomids displayed an important role as co-participants in the decomposition process.


Subject(s)
Chironomidae/physiology , Feeding Behavior , Food Chain , Plant Leaves , Animals , Brazil , Larva/physiology , Magnolia , Pteridium , Rivers , Zingiberaceae
2.
Chemosphere ; 186: 488-494, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28806677

ABSTRACT

On November 5th, 2015 the worst environmental disaster in Brazil spilled 60 million m3 of iron mining residue into Gualaxo do Norte River (Minas Gerais State), an affluent of the highest River Basin of the Brazilian Southeast (Doce River Basin), reaching the Atlantic Ocean. To assess the impact of the iron residue on the aquatic plant metabolism, we performed macrophyte growth experiments under controlled light and temperature conditions using two species (Egeria densa and Chara sp.). The plants' growth data were fitted in a kinetic model to obtain the biomass yields (K) and growth rates (µ). Turbidity and electrical conductivity of the water were measured over time. Both plants showed the highest growth rates in the contaminated condition (0.056 d-1 for E. densa and 0.45 d-1 for Chara sp.) and the biomass increased in the short-term (≈20 days). The control condition (i.e. no impacted water) supported the biomass increasing over time and the development of vegetative buddings with high daily rates (1.75 cm d-1 for E. densa and 0.13 cm d-1 for Chara sp). Turbidity showed a sharp decrease in 48 h and had no effects in the plants growth in the contaminated condition. The contamination affected the plants' yields in the long-term affecting the biomass development. This study provides preliminary information about the ecological consequences of a mining dam rupture aiming to collaborate with monitoring and risk assessments.


Subject(s)
Chara/growth & development , Hydrocharitaceae/growth & development , Iron , Mining , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Atlantic Ocean , Biomass , Brazil , Chara/drug effects , Hydrocharitaceae/drug effects , Plant Development/drug effects , Water Pollutants, Chemical/analysis
3.
Braz. j. biol ; 76(3): 673-685, tab, graf
Article in English | LILACS | ID: lil-785052

ABSTRACT

Abstract Macrophytes may constitute an important resource for several chemical, physical and biological processes within aquatic ecosystems. This study considers that in tropical reservoirs with low retention time and with low values of shoreline development (DL), the expansion and persistence of aquatic macrophytes are mainly reported to local conditions (e.g., hydrodynamic and wind exposure) rather than trophic status and depth of the euphotic zone. In this context, this study aimed at describing and comparing the incidence of aquatic macrophytes in a throughflowing, non-dendritic tropical reservoir. During February 2006 to November 2007, eight limnological surveys were performed quarterly within the Ourinhos Reservoir, and in the mouth areas of its tributaries. At the six sampling stations 30 variables were measured. The number of sites with plants varied between 21 and 38 and at the end of the 1st year the total richness was found. The sampling survey outcome the recognition of 18 species of aquatic macrophytes; Cyperaceae (2 genera and 1 species), Pontederiaceae (3 species) and Onarograceae (3 genera) were the families with higher diversity. Seven species (Typha domingensis Pers., Myriophyllum aquaticum (Vell.) Verdec, Salvinia auriculata Aubl., Eichhornia azurea (Sw.) Kunth, Eleocharis sp1, Eichhornia crassipes (Mart.) Solms, Oxycaryum cubense (Poepp. & Kunth) Lye) always were present and were more frequent in the sites. The occurrence of emergent species predominated (45.9%), followed by submersed rooted (24.5%), free floating (19.5%), floating rooted (9.7%) and free submersed (0.3%). Although limnological variables and the distribution of macrophytes have discriminated the same sampling points, the stepwise multiple linear regressions did not pointed out strong correspondences (or coherence) among the most constant and distributed macrophyte species and the selected limnological variables, as well the trophic statuses. Seeing the low relationship among limnological variables and macrophytes distribution, in the case of Ourinhos Reservoir, the results pointed out that the water turbulence, low DL and wind exposure are the main driving forces that determine its aquatic plant distribution, life forms and species composition.


Resumo As macrófitas podem constituir um recurso importante para vários processos físicos, químicos e biológicos dos ecossistemas aquáticos. Esse estudo considera que nos reservatórios tropicais com baixo tempo de retenção e com baixos valores do grau de desenvolvimento das margens (DL), a expansão e manutenção das macrófitas aquáticas são referidas principalmente às condições locais (e.g., hidrodinâmica e exposição ao vento), ao invés do estado trófico e da profundidade de zona eufótica. Nesse contexto, o presente estudo teve como objetivo descrever e comparar a incidência de macrófitas aquáticas em um reservatório tropical de fluxo rápido e não dendrítico. De fevereiro de 2006 a novembro de 2007, oito avaliações limnológicas foram realizadas trimestralmente no reservatório Ourinhos e nas regiões de desembocadura de seus afluentes. Nas seis estações de amostragem 30 variáveis foram determinadas. O número de locais com plantas variou entre 21 e 38 e no final do primeiro ano o número total de espécies foi encontrado. Foram relacionadas 18 espécies de macrófitas aquáticas; Cyperaceae (2 gêneros e espécies), Pontederiaceae (3 espécies) e Onarograceae (3 gêneros) foram as famílias com mais diversidade. Sete espécies (Typha domingensis Pers., Myriophyllum aquaticum (Vell.) Verdec, Salvinia auriculata Aubl., Eichhornia azurea (Sw.) Kunth, Eleocharis sp1, Eichhornia crassipes (Mart.) Solms, Oxycaryum cubense (Poepp. & Kunth) Lye) sempre estiveram presentes e foram as mais frequentes. As ocorrências de espécies emergentes predominaram (45,9%), seguidas das submersas enraizadas (24,5%), flutuantes livres (19,5%), flutuantes enraizadas (9,7%) e submersas livres (0,3%). Embora as variáveis limnológicas e as distribuições de macrófitas tenham discriminado os mesmo pontos de coleta, regressões lineares múltiplas stepwise não apontaram correspondências fortes (ou coerentes) entre as espécies de macrófitas mais constantes e distribuídas e as variáveis limnológicas, assim como os estados tróficos. No reservatório Ourinhos, a baixa relação entre as variáveis limnológicas e a distribuição das macrófitas aponta que a turbulência da água, o baixo valor de DL e a exposição ao vento sejam as principais forças que determinam a distribuição das plantas aquáticas, as suas formas de vida e a composição das espécies.


Subject(s)
Water Resources , Ecosystem , Magnoliopsida/classification , Eichhornia/growth & development
4.
Braz J Biol ; 76(3): 673-85, 2016 May 03.
Article in English | MEDLINE | ID: mdl-27143068

ABSTRACT

Macrophytes may constitute an important resource for several chemical, physical and biological processes within aquatic ecosystems. This study considers that in tropical reservoirs with low retention time and with low values of shoreline development (DL), the expansion and persistence of aquatic macrophytes are mainly reported to local conditions (e.g., hydrodynamic and wind exposure) rather than trophic status and depth of the euphotic zone. In this context, this study aimed at describing and comparing the incidence of aquatic macrophytes in a throughflowing, non-dendritic tropical reservoir. During February 2006 to November 2007, eight limnological surveys were performed quarterly within the Ourinhos Reservoir, and in the mouth areas of its tributaries. At the six sampling stations 30 variables were measured. The number of sites with plants varied between 21 and 38 and at the end of the 1st year the total richness was found. The sampling survey outcome the recognition of 18 species of aquatic macrophytes; Cyperaceae (2 genera and 1 species), Pontederiaceae (3 species) and Onarograceae (3 genera) were the families with higher diversity. Seven species (Typha domingensis Pers., Myriophyllum aquaticum (Vell.) Verdec, Salvinia auriculata Aubl., Eichhornia azurea (Sw.) Kunth, Eleocharis sp1, Eichhornia crassipes (Mart.) Solms, Oxycaryum cubense (Poepp. & Kunth) Lye) always were present and were more frequent in the sites. The occurrence of emergent species predominated (45.9%), followed by submersed rooted (24.5%), free floating (19.5%), floating rooted (9.7%) and free submersed (0.3%). Although limnological variables and the distribution of macrophytes have discriminated the same sampling points, the stepwise multiple linear regressions did not pointed out strong correspondences (or coherence) among the most constant and distributed macrophyte species and the selected limnological variables, as well the trophic statuses. Seeing the low relationship among limnological variables and macrophytes distribution, in the case of Ourinhos Reservoir, the results pointed out that the water turbulence, low DL and wind exposure are the main driving forces that determine its aquatic plant distribution, life forms and species composition.


Subject(s)
Ecosystem , Eichhornia/growth & development , Magnoliopsida/classification , Water Resources
6.
Braz J Biol ; 74(1): 100-10, 2014 Feb.
Article in English | MEDLINE | ID: mdl-25055091

ABSTRACT

This study aimed at describing kinetic aspects of aerobic and anaerobic mineralization of Eicchornia azurea. The samples of aquatic macrophyte and water were collected in the Monjolinho Reservoir (22° 00' S and 47° 54' W). To determine the leachate potential, dried plant fragments were added to reservoir water, with sampling lasting for 4 months, where the particulate and dissolved organic carbon concentrations were measured. The kinetics of mass loss was obtained with 10 mineralization chambers for both aerobic and anaerobic conditions, with the plant fragments and reservoir water. Two additional chambers were used to monitor the volume of gases produced from anaerobic mineralization, with bioassays to determine oxygen uptake. The results were fitted to a first-order kinetic model, from which 27.21% of detritus corresponded to labile/soluble fractions and 72.62% to the refractory fractions. The decay rates for the global mass losses of the labile/soluble components were 2.07 day-1. DOC mineralization was not verified for either condition. Under aerobic condition, the mass loss constant rate (0.0029 day-1) for the refractory fractions was 2.4 the value for the anaerobic one. Under anaerobic condition, the gases formation occurred in three phases. Based on these results, in the Monjolinho Reservoir, the decomposition of E. azurea that undergo within the water column and in upper layers of sediment is a faster process, favoring the mineralization. In contrast, in the lower layers of sediment the diagenetic processes (i.e. humus production and accumulation of organic matter) are favored.


Subject(s)
Biodegradation, Environmental , Eichhornia/metabolism , Aerobiosis , Anaerobiosis , Brazil , Carbon/metabolism , Fresh Water , Oxygen Consumption , Time Factors
7.
Braz J Biol ; 73(2): 299-307, 2013 May.
Article in English | MEDLINE | ID: mdl-23917557

ABSTRACT

Some aquatic plants have fast metabolism and growth, even at sub-optimal conditions, and become dominant in lentic environments such as large reservoirs, altering the nutrient cycle and impairing their environmental quality. There is great need in the knowledge impact processes of invasive species in aquatic environments, among the major, those related to the decomposition. This study evaluated the anaerobic decomposition of invasive submerged macrophytes Egeria densa Planch, native, and Hydrilla verticillata (L.f.) Royle, exotic in Porto Primavera and Jupiá reservoirs, Paraná basin. We evaluated the decay of organic matter, humification degree of the leached material, electrical conductivity and pH of the decomposition process. Mathematical models were utilised to describe the decomposition patterns over time. Both species showed the same heterogeneous pattern of decay of organic matter and carbon mineralisation. The models of carbon mineralisation, compared with the experimentally obtained data presented were adequate. Both species show no significant differences in the decomposition processes. Incubations of both species presented rapid t ½ for POC mineralisation and low DOC mineralisation.


Subject(s)
Biodegradation, Environmental , Fresh Water , Plants/metabolism , Anaerobiosis , Tropical Climate
8.
Braz. j. microbiol ; 42(3): 909-918, July-Sept. 2011. ilus, tab
Article in English | LILACS | ID: lil-607519

ABSTRACT

Due to the connection between enzymatic activity and degradation of different fractions of organic matter, enzyme assays can be used to estimate degradation rates of particulate and dissolved organic carbon in freshwater systems. The aim of this study was to quantify and model the enzymatic degradation involving the decomposition of macrophytes, describing temporal activity of cellulases (EC 3.2.1.4 and EC 3.2.1.91) and xylanase (EC 3.2.1.8) during in situ decomposition of three aquatic macrophytes (Salvinia sp., Eichhornia azurea and Cyperus giganteus) on the surface and water-sediment interface (w-s interface) of an oxbow lagoon (Óleo lagoon) within a natural Brazilian Savanna Reserve. Overall, the enzymatic degradation of aquatic macrophytes in Óleo lagoon occurred during the whole year and was initiated together with leaching. Xylanase production was ca. 5 times higher than cellulase values due to easy access to this compound by cellulolytic microorganisms. Enzymatic production and detritus mass decay were similar on the surface and w-s interface. Salvinia sp. was the most recalcitrant detritus, with low mass decay and enzymatic activity. E. azurea and C. giganteus decomposition rates and enzymatic production were high and similar. Due to the physicochemical homogeneity observed in the Óleo lagoon, the differences between the decay rates of each species are mostly related with detritus chemical quality.


Subject(s)
Fresh Water/analysis , Aquatic Environment/analysis , Carbon , Clinical Enzyme Tests , Cellulase/analysis , Enzyme Activation , Macrophytes , Coastal Lagoon , Methods , Methods , Water Samples
9.
Braz J Biol ; 71(1): 27-35, 2011 02.
Article in English | MEDLINE | ID: mdl-21437396

ABSTRACT

The kinetics of oxygen consumption related to mineralisation of 18 taxa of aquatic macrophytes (Cyperus sp, Azolla caroliniana, Echinodorus macrophyllus, Eichhornia azurea, Eichhornia crassipes, Eleocharis sp1, Eleocharis sp2, Hetereanthera multiflora, Hydrocotyle raniculoides, Ludwigia sp, Myriophyllum aquaticum, Nymphaea elegans, Oxycaryum cubense, Ricciocarpus natans, Rynchospora corymbosa, Salvinia auriculata, Typha domingensis and Utricularia foliosa) from the reservoir of Piraju Hydroelectric Power Plant (São Paulo state, Brazil) were described. For each species, two incubations were prepared with ca. 300.0 mg of plant (DW) and 1.0 L of reservoir water sample. The incubations were maintained in the dark and at 20 ºC. Periodically the dissolved oxygen (DO) concentrations were measured; the accumulated DO values were fitted to 1st order kinetic model and the results showed that: i) high oxygen consumption was observed for Ludwigia sp (533 mg g-1 DW), while the lowest was registered for Eleocharis sp1 (205 mg g-1 DW) mineralisation; ii) the higher deoxygenation rate constants were verified in the mineralisation of A. caroliniana (0.052 day-1), H. raniculoides (0.050 day-1) and U. foliosa (0.049 day-1). The oxygen consumption rate constants of Ludwigia sp and Eleocharis sp2 mineralisation (0.027 day-1) were the lowest. The half-time of oxygen consumption varied from 9 to 26 days. In the short term, the detritus of E. macrophyllus, H. raniculoides, Ludwigia sp, N. elegans and U. foliosa were the critical resources to the reservoir oxygen demand; while in the long term, A. caroliniana, H. multiflora and T. domingensis were the resources that can potentially contribute to the benthic oxygen demand of this reservoir.


Subject(s)
Biodegradation, Environmental , Fresh Water , Magnoliopsida/metabolism , Oxygen Consumption/physiology , Magnoliopsida/classification , Magnoliopsida/physiology , Time Factors
10.
Braz J Microbiol ; 42(3): 909-18, 2011 Jul.
Article in English | MEDLINE | ID: mdl-24031706

ABSTRACT

Due to the connection between enzymatic activity and degradation of different fractions of organic matter, enzyme assays can be used to estimate degradation rates of particulate and dissolved organic carbon in freshwater systems. The aim of this study was to quantify and model the enzymatic degradation involving the decomposition of macrophytes, describing temporal activity of cellulases (EC 3.2.1.4 and EC 3.2.1.91) and xylanase (EC 3.2.1.8) during in situ decomposition of three aquatic macrophytes (Salvinia sp., Eichhornia azurea and Cyperus giganteus) on the surface and water-sediment interface (w-s interface) of an oxbow lagoon (Óleo lagoon) within a natural Brazilian Savanna Reserve. Overall, the enzymatic degradation of aquatic macrophytes in Óleo lagoon occurred during the whole year and was initiated together with leaching. Xylanase production was ca. 5 times higher than cellulase values due to easy access to this compound by cellulolytic microorganisms. Enzymatic production and detritus mass decay were similar on the surface and w-s interface. Salvinia sp. was the most recalcitrant detritus, with low mass decay and enzymatic activity. E. azurea and C. giganteus decomposition rates and enzymatic production were high and similar. Due to the physicochemical homogeneity observed in the Óleo lagoon, the differences between the decay rates of each species are mostly related with detritus chemical quality.

11.
Braz J Biol ; 70(3): 559-68, 2010 08.
Article in English | MEDLINE | ID: mdl-20730342

ABSTRACT

The present study discussed the kinetic aspects of leachate decomposition from an aquatic macrophyte, Pistia stratiotes L (water lettuce). This species was collected from Barra Bonita Reservoir located in the State of São Paulo (Brazil). Decomposition chambers were prepared with high molecular weight (HMW), low molecular weight (LMW) and integral (INT = HMW + LMW) dissolved organic matter (DOM) diluted with reservoir water. The samples were incubated at 20 degrees C, in darkness and under aerobic or anaerobic conditions. For 79 days, the concentrations of dissolved oxygen (DO) and organic carbon (OC) were measured. For calculating the deoxygenation coefficients (k d) and maximum oxygen consumption (COmax) the concentration of DO was integrated and fitted to a first-order kinetics model, which also applied to the depletion of OC concentrations. The COmax of INT incubations were 4% higher than the sum of HMW and LMW fractions. The deoxygenation coefficients, k d, had the same order of magnitude for all treatments. In relation to carbon decay, regardless of the availability of oxygen, the INT DOM also showed higher mineralisation. These results suggest that the leachate mineralisations are short-term processes; when the fractionation of the leachates occurs, the LMW had organic compounds with more accessibility for heterotrophic metabolism. On the other hand, when compared to INT DOM, the HMW and LMW were less consumed suggesting an interaction of the reactivity of the leachate. Our data suggest that in the Barra Bonita Reservoir the mineralisation of P. stratiotes leachates occurs through two competitive pathways (i.e. mineralisation of the labile compounds and formation of recalcitrant organic resources and their mineralisation) in which the oxygen availability and the molecular mass of DOM can interfere in the rates of reactions.


Subject(s)
Araceae/metabolism , Biodegradation, Environmental , Carbon/metabolism , Fresh Water/chemistry , Oxygen Consumption , Aerobiosis , Anaerobiosis , Brazil
12.
Braz. j. biol ; 70(3): 559-568, Aug. 2010. ilus, tab
Article in English | LILACS | ID: lil-555267

ABSTRACT

The present study discussed the kinetic aspects of leachate decomposition from an aquatic macrophyte, Pistia stratiotes L (water lettuce). This species was collected from Barra Bonita Reservoir located in the State of São Paulo (Brazil). Decomposition chambers were prepared with high molecular weight (HMW), low molecular weight (LMW) and integral (INT = HMW + LMW) dissolved organic matter (DOM) diluted with reservoir water. The samples were incubated at 20 °C, in darkness and under aerobic or anaerobic conditions. For 79 days, the concentrations of dissolved oxygen (DO) and organic carbon (OC) were measured. For calculating the deoxygenation coefficients (k d) and maximum oxygen consumption (COmax) the concentration of DO was integrated and fitted to a first-order kinetics model, which also applied to the depletion of OC concentrations. The COmax of INT incubations were 4 percent higher than the sum of HMW and LMW fractions. The deoxygenation coefficients, k d, had the same order of magnitude for all treatments. In relation to carbon decay, regardless of the availability of oxygen, the INT DOM also showed higher mineralisation. These results suggest that the leachate mineralisations are short-term processes; when the fractionation of the leachates occurs, the LMW had organic compounds with more accessibility for heterotrophic metabolism. On the other hand, when compared to INT DOM, the HMW and LMW were less consumed suggesting an interaction of the reactivity of the leachate. Our data suggest that in the Barra Bonita Reservoir the mineralisation of P. stratiotes leachates occurs through two competitive pathways (i.e. mineralisation of the labile compounds and formation of recalcitrant organic resources and their mineralisation) in which the oxygen availability and the molecular mass of DOM can interfere in the rates of reactions.


Nesse estudo foram discutidos aspectos cinéticos da decomposição de lixiviados da macrófita aquática Pistia stratiotes L (alface-d'água). A macrófita foi coletada no reservatório de Barra Bonita, localizado no Estado de São Paulo (Brasil). As câmaras de decomposição foram preparadas com amostras de água do reservatório e matéria orgânica dissolvida (MOD) de lixiviados com massa molecular alta (MMA), massa molecular baixa (MMB) e integral (INT = MMA + MMB). As amostras foram incubadas a 20 ºC, no escuro e sob condições aeróbias e anaeróbias. Durante 79 dias, as concentrações de oxigênio dissolvido (OD) e de carbono orgânico (CO) foram determinadas. Para os cálculos dos coeficientes de desoxigenação (k d) e das quantidades máximas de oxigênio consumido (OCmax), as concentrações de OD foram integradas e ajustadas a um modelo cinético de primeira ordem, que também foi empregado para os ajustes dos decréscimos das concentrações de CO. O OCmax da incubação com lixiviado integral (INT) foi 4 por cento maior que a soma dos OCmax das frações MMA e MMB. Os coeficientes de desoxigenação foram da mesma ordem de magnitude em todos os tratamentos. Em relação à perda de massa do carbono, independente da disponibilidade de oxigênio, a MOD INT apresentou as mineralizações mais elevadas. Os resultados sugeriram que as mineralizações desses lixiviados foram processos de curto prazo; na ocorrência de fracionamento, os lixiviados com MMB apresentam compostos orgânicos mais acessíveis aos metabolismos dos heterótrofos. Por outro lado, quando comparados com MOD INT, os lixiviados com MMB e MMA foram menos consumidos, sugerindo interação na reatividade dos lixiviados. Os resultados sugerem que no reservatório de Barra Bonita as mineralizações dos lixiviados de P. stratiotes ocorrem por duas rotas competitivas (i.e. mineralização dos compostos lábeis e formação de recursos refratários e sua mineralização), nas quais a disponibilidade de oxigênio e a massa molecular...


Subject(s)
Araceae/metabolism , Biodegradation, Environmental , Carbon/metabolism , Fresh Water/chemistry , Oxygen Consumption , Aerobiosis , Anaerobiosis , Brazil
13.
Braz J Biol ; 70(2): 317-24, 2010 May.
Article in English | MEDLINE | ID: mdl-20549063

ABSTRACT

In this study the Q10 coefficients of heterotrophic activities were measured during aerobic decomposition of Utricularia breviscapa Wright ex Griseb from Oleo lagoon (21 degrees 36' S and 49 degrees 47' W), Luiz Antonio, SP. The bioassays were set up with fragments of U. breviscapa and incubated with lagoon water at distinct temperatures (15.3, 20.8, 25.7 and 30.3 degrees C). Periodically for 95 days, the concentrations of dissolved oxygen were determined in the bioassays. The results of the temporal variation of dissolved oxygen were fitted to a first-order kinetic model. The stoichiometric relations were calculated on the basis of these fittings. In general, the results allowed us to conclude: i) the oxygen/carbon stoichiometric relations (O/C) varied in function of temperature and time. The temporal variations of the O/C observed in the decomposition of U. breviscapa, suggest that, in the initial phases of the process, low organic carbon concentrations were enough to generate great demands of oxygen, ii) the oxygen consumption coefficients (k d) presented low variation in function of increasing temperature, iii) the increment of the temperature induced a higher consumption of oxygen (COmax) and iv) the simulations indicate that during summer, temperature activates the metabolism of decomposing microbiota.


Subject(s)
Carbon/metabolism , Heterotrophic Processes/physiology , Magnoliopsida/metabolism , Oxygen Consumption/physiology , Fresh Water , Seasons , Temperature
14.
Braz J Biol ; 68(1): 61-7, 2008 02.
Article in English | MEDLINE | ID: mdl-18470379

ABSTRACT

This study presents a kinetic model of oxygen consumption during aerobic decomposition of detritus from seven species of aquatic macrophytes: Cabomba furcata, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Oxycaryum cubense and Utricularia breviscapa. The aquatic macrophytes were collected from Oleo Lagoon situated in the Mogi-Guaçu river floodplain (SP, Brazil). Mineralization experiments were performed using the closed bottles method. Incubations made with lake water and macrophytes detritus (500 mL and 200 mg.L(-1) (DM), respectively) were maintained during 45 to 80 days at 20 degrees C under aerobic conditions and darkness. Carbon content of leachates from aquatic macrophytes detritus and dissolved oxygen concentrations were analyzed. From the results we concluded that: i) the decomposition constants differ among macrophytes; these differences being dependent primarily on molecular and elemental composition of detritus and ii) in the short term, most of the oxygen demand seems to depend upon the demineralization of the dissolved carbon fraction.


Subject(s)
Biodegradation, Environmental , Magnoliopsida/metabolism , Minerals/metabolism , Oxygen Consumption , Fresh Water , Models, Biological , Time Factors
15.
Braz J Biol ; 68(1): 115-22, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18470385

ABSTRACT

This study aimed to discuss and describe the oxygen consumption during aerobic mineralization of organic products (cells and excretion products) from five unialgal cultures: Cryptomonas sp., Microcystis aeruginosa, Anabaena spiroides, Thalassiosira sp. and Aulacoseira granulata. These species were isolated from Barra Bonita reservoir (22 degrees 29' S and 48 degrees 34' W) and cultivated in the laboratory. From each culture, two decomposition chambers were prepared; each chamber contained about 130 mg.L(-1) of carbon from water samples of the reservoir. The chambers were aerated and incubated in the dark at 20.0 degrees C. The concentration of dissolved oxygen, pH values and electrical conductivity of the solutions were determined during a period of 10 days. The results indicated increases in oxygen consumption for all the solutions studied and also for electrical conductivity. The pH values presented a decreasing tendency throughout the experiment. Oxygen consumption varied from 43 (Aulacoseira granulata chamber) to 345 mg O2 g(-1) C (Anabaena spiroides chamber). Decrease in pH values was probably due to increase in CO2 concentration from microbial respiration. Increase in electrical conductivity might be due to the liberation of ions during decomposition. The results demonstrate the potentiality of the studied genera in influencing oxygen availability followed by a die-off event. It also indicates the possibility of changing of the electrical conductivity and pH values in the water column due the aerobic algae mineralization.


Subject(s)
Biodegradation, Environmental , Carbon/metabolism , Eukaryota/metabolism , Oxygen Consumption , Phytoplankton/metabolism , Electric Conductivity , Fresh Water/chemistry , Hydrogen-Ion Concentration
16.
Braz. j. biol ; 68(1): 61-67, Feb. 2008. graf, tab
Article in English | LILACS | ID: lil-482184

ABSTRACT

This study presents a kinetic model of oxygen consumption during aerobic decomposition of detritus from seven species of aquatic macrophytes: Cabomba furcata, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Oxycaryum cubense and Utricularia breviscapa. The aquatic macrophytes were collected from Óleo Lagoon situated in the Mogi-Guaçu river floodplain (SP, Brazil). Mineralization experiments were performed using the closed bottles method. Incubations made with lake water and macrophytes detritus (500 mL and 200 mg.L-1 (DM), respectively) were maintained during 45 to 80 days at 20 °C under aerobic conditions and darkness. Carbon content of leachates from aquatic macrophytes detritus and dissolved oxygen concentrations were analyzed. From the results we concluded that: i) the decomposition constants differ among macrophytes; these differences being dependent primarily on molecular and elemental composition of detritus and ii) in the short term, most of the oxygen demand seems to depend upon the demineralization of the dissolved carbon fraction.


Nesse estudo foi utilizado um modelo cinético para a descrição dos consumos de oxigênio durante a mineralização aeróbia de detritos de sete espécies de macrófitas aquáticas: Cabomba furcata, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Oxycaryum cubense e Utricularia breviscapa. As macrófitas aquáticas foram coletadas na Lagoa do Óleo, situada na planície de inundação do rio Mogi-Guaçu (SP, Brasil). Os experimentos foram realizados empregando-se incubações similares as de DBO. As incubações foram preparadas com água da lagoa e detritos das macrófitas aquáticas (500 mL e 200 mg.L-1 (PS), respectivamente) e foram mantidas durante 45 a 80 dias a 20 °C, sob condições aeróbias e no escuro. Foram determinados os conteúdos de carbono dos lixiviados dos detritos e os consumos de oxigênio dissolvido durante a mineralização. A partir dos resultados obtidos pôde-se concluir que: i) os coeficientes de mineralização das macrófitas aquáticas diferiram entre si, essas diferenças dependeram principalmente das composições moleculares e elementares dos detritos; e ii) a curto prazo, grande parte da demanda de oxigênio parece depender da mineralização das de carbono dissolvido provenientes da lixiviação.


Subject(s)
Magnoliopsida/metabolism , Biodegradation, Environmental , Minerals/metabolism , Oxygen Consumption , Fresh Water , Models, Biological , Time Factors
17.
Braz. j. biol ; 68(1): 115-122, Feb. 2008. ilus, tab
Article in English | LILACS | ID: lil-482191

ABSTRACT

This study aimed to discuss and describe the oxygen consumption during aerobic mineralization of organic products (cells and excretion products) from five unialgal cultures: Cryptomonas sp., Microcystis aeruginosa, Anabaena spiroides, Thalassiosira sp. and Aulacoseira granulata. These species were isolated from Barra Bonita reservoir (22º 29’ S and 48º 34’ W) and cultivated in the laboratory. From each culture, two decomposition chambers were prepared; each chamber contained about 130 mg.L-1 of carbon from water samples of the reservoir. The chambers were aerated and incubated in the dark at 20.0 ºC. The concentration of dissolved oxygen, pH values and electrical conductivity of the solutions were determined during a period of 10 days. The results indicated increases in oxygen consumption for all the solutions studied and also for electrical conductivity. The pH values presented a decreasing tendency throughout the experiment. Oxygen consumption varied from 43 (Aulacoseira granulata chamber) to 345 mg O2 g-1 C (Anabaena spiroides chamber). Decrease in pH values was probably due to increase in CO2 concentration from microbial respiration. Increase in electrical conductivity might be due to the liberation of ions during decomposition. The results demonstrate the potentiality of the studied genera in influencing oxygen availability followed by a die-off event. It also indicates the possibility of changing of the electrical conductivity and pH values in the water column due the aerobic algae mineralization.


Este estudo teve por objetivo descrever e discutir aspectos do consumo de oxigênio decorrente da mineralização aeróbia de células e produtos de excreção provenientes de cinco culturas de algas: Cryptomonas sp., Microcystis aeruginosa, Anabaena spiroides, Thalassiosira sp. e Aulacoseira granulata. As algas foram isoladas do reservatório de Barra Bonita (22º 29’ S e 48º 34’ W) e cultivadas em laboratório. Para cada cultura, foram preparadas duas câmaras de mineralização; cada garrafa conteve, em base de carbono, cerca de 130 mg.L-1 em amostras de água do reservatório. As câmaras foram aeradas e incubadas no escuro a 20 ºC. Durante um período de 10 dias, foram determinadas as concentrações de oxigênio dissolvido, pH e condutividade elétrica das misturas. Os resultados indicaram incrementos nos consumos de oxigênio e de condutividade elétrica e decréscimos nos valores de pH. O consumo de oxigênio variou de 43 (experimento com Aulacoseira granulata) a 345 mg O2 g-1 C (experimento com Anabaena spiroides). Os aumentos dos valores de condutividade elétrica provavelmente decorreram da liberação de íons durante a decomposição. Para o pH, a diminuição dos valores foi provavelmente resultante do incremento das concentrações de CO2 provenientes da respiração dos microrganismos. Os resultados sugeriram para a represa de Barra Bonita, a possibilidade de incremento das demandas de oxigênio em função da degradação dos gêneros selecionados. Visto que esse reservatório é eutrófico, os resultados indicam também a possibilidade de alterações da condutividade elétrica da água e do pH devido à mineralização aeróbia de algas.


Subject(s)
Biodegradation, Environmental , Carbon/metabolism , Eukaryota , Oxygen Consumption , Phytoplankton/metabolism , Electric Conductivity , Fresh Water/chemistry , Hydrogen-Ion Concentration
18.
Braz J Biol ; 66(2B): 641-50, 2006 May.
Article in English | MEDLINE | ID: mdl-16906296

ABSTRACT

Assays were carried out to evaluate effects of detritus size on the mineralization of an aquatic macrophyte, the Oxycaryum cubense. Samples of plant and water were collected from an oxbow lake, the Infernão lagoon (21 degrees 35' S and 47 degrees 51' W) located at Mogi Guaçu river floodplain. The plants were taken to the laboratory, washed under tap water, dried (50 degrees C) and fractioned into six groups according to their size, viz. 100, 10, 1.13, 0.78, 0.61 and 0.25 mm. Decomposition chambers were prepared by adding 1.0 g of plant fragments to 4.1 L of water lagoon. In sequence, the incubations were aerated and the concentrations of dissolved oxygen, the pH, the electric conductivity and the temperature were monitored for 120 days. The occurrence of anaerobic processes was avoided by reoxygenating the solutions. The experimental results were fitted to a first order kinetic model and the consumption of dissolved oxygen from mineralization processes was obtained. The physical process of fragmentation of O. cubense detritus is unlikely to promote the consumption of higher quantities of dissolved oxygen in mineralization processes meaning that fragmentation should not interfere in the balance of DO in this aquatic system, however fragmentation processes favored the acidification and increased the liberation of dissolved ions from the Infernão lagoon.


Subject(s)
Cyperaceae/metabolism , Geologic Sediments , Organic Chemicals/metabolism , Cyperaceae/chemistry , Electric Conductivity , Fresh Water , Hydrogen-Ion Concentration , Kinetics , Oxygen Consumption , Particle Size , Time Factors
19.
Braz. j. biol ; 66(2b): 641-650, May 2006. tab, graf
Article in English | LILACS | ID: lil-433149

ABSTRACT

Ensaios foram realizados para avaliar os efeitos de tamanho dos detritos na mineralização de uma macrófita aquática, a Oxycaryum cubense. Foram coletadas amostras de planta e de água de uma lagoa marginal, a lagoa do Infernão (21° 35' S e 47° 51' W), localizada na planície de inundação do rio Mogi Guaçu. As plantas foram levadas ao laboratório, lavadas em água corrente, secas (50 °C) e fracionadas em seis grupos de acordo com o tamanho: 100, 10, 1,13, 0,78, 0,61 e 0,25 mm. Foram preparadas câmaras de decomposição adicionando aproximadamente 1,0 g de fragmentos de planta em 4,1 L de água da lagoa. Na seqüência, as incubações foram aeradas e as concentrações de oxigênio dissolvido, o pH, a condutividade elétrica e a temperatura foram monitorados durante 120 dias. A ocorrência de processos de anaeróbios foi evitada por reoxigenação das soluções. Os resultados experimentais foram ajustados a um modelo cinético de primeira ordem e o consumo de oxigênio dissolvido decorrente da mineralização foi obtido. De maneira geral, o processo físico de fragmentação não tende a envolver maiores quantidades de oxigênio durante a mineralização aeróbia dos detritos, significando que a fragmentação não interfere no balanço de oxigênio dissolvido deste sistema aquático; entretanto favoreceu a acidificação e também a liberação de íons dissolvidos na lagoa do Infernão.


Subject(s)
Cyperaceae/metabolism , Geologic Sediments , Organic Chemicals/metabolism , Cyperaceae/chemistry , Electric Conductivity , Fresh Water , Hydrogen-Ion Concentration , Kinetics , Oxygen Consumption , Particle Size , Time Factors
20.
Braz J Biol ; 64(3B): 583-90, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15619996

ABSTRACT

Assays were carried out to evaluate the dissolved oxygen uptake resulting from mineralization of humic substances (fulvic acid (FA) and humic acid (HA)) from different sources: sediment, dissolved organic matter (DOM) of 120-day decomposed aquatic macrophyte (Scirpus cubensis and Cabomba piauhyensis), and lagoon DOM. The experiments were also aimed at estimating the oxygen uptake coefficient of the mineralization. About 20-30 mg of substrate were added to 1.1 liters of water from Infernão Lagoon (21 degrees 33' to 21 degrees 37'S; 47 degrees 45' to 47 degrees 51'W). The solutions were aerated and the dissolved oxygen (DO) was monitored during 40 days. Dissolved organic carbon (DOC) and particulate organic carbon (POC) were estimated after 80 days of the experiment. Anaerobic processes were avoided by aerating the solutions. The results were fitted to a first-order kinetics model, from which the uptake of oxygen parameters was obtained. Oxygen consumption (OC) ranged from 4.24 mg L(-1) (HA--S. cubensis) to 33.76 mg L(-1) (FA--sediment). The highest deoxygenation coefficient (kD) was observed during mineralization of FA--DOM (0.299 day(-1)), followed in decreasing order by FA--S. cubensis, HA--sediment, HA--S. cubensis, FA --sediment, and FA--C. piauhyensis (0.282; 0.255; 0.178; 0.130, and 0.123 day(-1), respectively). The carbon analyses indicated that the FA and HA samples at the end of the experiment presented a decay that varied from 15.23% to 42.35% and that the FA and HA conversions into POC were relatively low (from 0.76% to 3.94%).


Subject(s)
Cyperaceae/metabolism , Fresh Water/chemistry , Humic Substances , Organic Chemicals/metabolism , Oxygen/metabolism , Biodegradation, Environmental , Brazil , Carbon Dioxide/metabolism , Geologic Sediments/chemistry , Models, Biological , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...